Research Group Overview: Mission, research focus, main scientific directions

The research activities of this group are in the scientific area of Atomic, Molecular and Optical (AMO) physics. These activities are in the following two major research directions. The direction of "Attosecond Science" (Direction #A) and the direction of "Quantum optics in Strong laser fields" (Direction #B).

Direction #A: Attosecond Science

Leader(s): Paraskevas Tzallas, Dimitris Charalambidis

In this direction the research mainly focuses on the generation, characterization and applications of intense coherent extreme-ultraviolet (XUV) radiation emitted in the form of pulses of duration less than 1fs (attosecond pulses) [Nature 426, 267 (2003); Nature Phys. 3, 846 (2007); Nature Phys. 7, 781 (2011); APL Photonics 4, 080901 (2019); Photonics, 4, 26, (2017)]. It targets the development, upgrades and running of a state of the art, table top, attosecond facility dedicated to the investigation of ultrafast dynamics in all states of matter, as well as of non-linear and strong field phenomena induced solely by the XUV radiation. Other activities include, the generation of high photon flux circularly polarized XUV pulses for investigating ultrafast chiral phenomena in the XUV spectral region, the development of high spatial resolution ion imaging techniques for single-shot high resolution time delay spectroscopy in the XUV, electron-ion coincidence studies in strong field laser-atom interactions, adaptive quantum control through feedback optimized pulse shaping and the development of quantitative methods in strong field interactions.

Direction #B: Quantum Optics in Strong Laser-fields

Leader: Paraskevas Tzallas

In this direction, the research focuses on the development of new schemes for the generation of novel non-classical light states that will be used for novel investigations in quantum technology. In particular it targets: I) the development of a of quantum operations in a variety of intense laser-matter interactions, II) the generation of high photon number optical cat states with controllable quantum features and of “massively” entangled coherent state superposition, and III) the applications in quantum metrology/sensing, quantum communication and quantum information processing. This direction, is based on the recently developed method [Nature Phys. 17, 1104 (2021); Phys. Rev. A, 105, 033714 (2022); Phys. Rev. Lett., 128, 123603 (2022)] with which a coherent light state superposition (optical Schrodinger cat states) has been produced by implementing "conditioning" approaches [Nature Comms, 8, 15170 (2017); Phys. Rev. Lett., 122, 193602(2019)] in the high harmonic generation process induced by intense laser-atom interactions.

 

Research Topics

Direction #A: Attosecond Science

Specifically, the research mainly focuses on the generation, characterization and applications of intense coherent extreme-ultraviolet (XUV) radiation emitted in the form of pulses of duration less than 1fs (attosecond pulses). It targets the development, upgrades and running of a state of the art, table top, attosecond facility dedicated to the investigation of ultrafast dynamics in all states of matter, as well as of non-linear and strong field phenomena induced solely by the EUV radiation. Other activities include electron-ion coincidence studies in strong field laser-atom interactions, adaptive quantum control through feedback optimized pulse shaping and the development of quantitative methods in strong field interactions.

Contributions to the above research topics encompass (chronologically listed):

I) the development of a large number of novel devices and techniques such as 1) the dispersionless Michelson interferometer for the characterization of attosecond pulse, (Appl. Phys. B 74, 197 (2002); Opt. Lett. 27, 1561 (2002)), 2) the dispersionless non-linear XUV autocorrelator (Nature 426, 267 (2003)), 3) phase control techniques for he characterization of attosecond pulses (Phys. Rev. A 64, 1, 051801 (R) (2001); Phys. Rev. Lett. 96, 163901 (2006); New J. Phys. 9, 232, (2007)),  4) an inteferometric polarization gating device for the generation of intense isolated attosecond pulses by multi-cycle high power laser pulses (Nature Phys. 3, 846 (2007)), 5) a carrier-envelope-phase (CEP) meter for multi-cycle laser pulses (Phys. Rev. A 82, 061401 (2010)), and the use of an Ion Microscope detector for quantitative studies in the linear and non-linear XUV regime (Phys. Rev. A 90, 013822 (2014); Sci. Rep. 6, 21556 (2016)).

II) highlights such as 1) the first indication of experimental attosecond localization  (Phys. Rev. Lett. 83, 4289 (1999)), 2) the first electron-ion coincidence measurements in the strong field interaction region (Phys. Rev. Lett. 85, 2268 (2000)), 3) the first  two XUV-photon ionization be a comp of higher harmonics Phys. Rev. Lett. 90, 133902 (2003), 4) adaptive quantum control of vibrational ionization branching ratios through feedback - optimized fs pulse shaping (J. Chem. Phys. 118, 595 (2003)), 5) the direct observation of attosecond light bursts emitted from gas and solid state media (Nature 426, 267 (2003); Nature Phys. 5, 124 (2009)), 6) the generation of intense coherent continuum XUV radiation generated by multi-cycle high-power laser fields (Nature Phys. 3, 846 (2007)), 7) the observation of atomic direct double ionization by a harmonic superposition (Phys. Rev. A 74, 051402(R) (2006)), 8) the tracking of the autoionizing-wavepacket dynamics and molecular dynamics at 1-fs temporal scale (Phys. Rev. Lett. 105, 043902 (2010); Nature Phys. 7, 781 (2011); Phys. Rev. A 89, 023420 (2014)), 9) the measurement of the electron quantum path details of the recollision process (Phys. Rev. A 90, 013822 (2014)) and the quantitative measurement of the single- and the two-XUV-photon ionization cross-section of Helium in the 20eV photon energy range (Sci. Rep. 6, 21556 (2016)).

The latest technological advancement towards a table top high XUV-photon-flux attosecond pulse source is the newly constructed ≈ 18 m long 20 GWatt XUV (HHG) beam line [9]. The beam line provides the highest ever XUV pulse energy (≈ 230 µJ per pulse) in the spectral region 20-30eV. The corresponding photon flux of 0.6 ´ 10^14 photons/pulse is competitive to FEL photon fluxes in this spectral region. Using these pulses a focused intensity of ~7 ´ 10^15 W/cm2 has been achieved (a value that by using high reflectivity XUV optics can be increased to 10^17 W/cm2) and multiply charged Argon atoms (Ar^4+) have been produced by multi-XUV-photon ionization processes (Phys. Rev. A 98, 023426 (2018)).

Direction #B: Qunatum Optics in Strong laser--fields

In this direction, the research focuses on the development of new schemes for the generation of novel non-classical light states that will be used for novel investigations in quantum technology. In particular it targets: I) the development of a of quantum operations in a variety of intense laser-matter interactions, II) the generation of high photon number optical cat states with controllable quantum features and of “massively” entangled coherent state superposition, and III) the applications in quantum metrology/sensing, quantum communication and quantum information processing. This direction, is based on the recently developed method [Nature Phys. 17, 1104 (2021); Phys. Rev. A, 105, 033714 (2022); Phys. Rev. Lett., 122, 123603 (2022)] with which a coherent light state superposition (optical Schrodinger cat states) has been produced by implementing "conditioning" approaches [Sci. Rep. 6, 32821 (2016); Nature Comms8, 15170 (2017); Phys. Rev. Lett.122, 193602(2019); Photonics 8, 192, 2021] in the high harmonic generation process induced by intense laser-atom interactions.

The long-standing scientific quest of real-time tracing electronic motion and dynamics in all states of matter has been remarkably benefited by the development of intense pulsed laser sources with a temporal resolution in the attosecond (1 attosecond (asec) = 10^-18 sec) time scale. In the last 15 years we have systematically developed the means for the generation of high photon flux extreme ultraviolet (XUV) pulses with 1fs to sub-fs pulse duration, making use of the process of higher order harmonic generation (HOHG). Utilizing multi-cycle laser pulses delivered by high peak Ti:S laser systems, in combination with Polarization Gating techniques [1], XUV pulse intensities up to 10^14 W/cm2 have been reached in the spectral region 10-24 eV. These pulses have been exploited in I) the temporal characterization of attosecond pulses [2-4]; II) the first proof of principle XUV-pump-XUV-probe experiments for the study of 1fs scale electron dynamics in atoms/molecules [5, 6], and III)  quantitative studies of linear and non-linear ionization processes in XUV regime [7,8].

The latest technological advance towards an XUV high photon flux attosecond pulsed source is the newly constructed ≈ 18 m long (HHG) 20 GWatt XUV beam line [9]. The beam line beam line provides the highest ever XUV pulse energy (≈ 230 µJ per pulse) in the spectral region 20-30eV. The corresponding photon flux of 0.6 X 10^14 photons/pulse is competitive with FEL photon fluxes in this spectral region. Using these pulses a focused intensity of ~7 X 10^15 W/cm^2 has been achieved (a value that by using high reflectivity XUV optics can be increased to 10^17 W/cm^2) and multiply charged Argon atoms (Ar^4+) have been produced by multi-XUV-photon ionization processes.

[1] P. Tzallas et al. Nature Physics 3, 846 (2007)

[2] P. Tzallas et al. Nature 426, 267 (2003)

[3] L. A. A. Nikolopoulos Phys. Rev. Lett.. 94, 113905 (2005)

[4] Y. Nomura et al. Nature Physics 5, 124 - 128 (2009)

[5] P. Tzallas et al. Nature Physics 7, 781 (2011)

[6] P. A. Carpeggiani,  et al.  Phys. Rev. A 89, 023420 (2014)

[7] N. Tsatrafyllis, et al., Sci. Rep. 6(1), 21556 (2016).

[8] P. Tzallas, et al., J. Opt. 20(2), 024018 (2018).

[9] A. Nayak et al., Phys. Rev. A 98, 023426 (2018)

Coherent broadband XUV radiation has been extensively used over the last decades for tracing ultrafast dynamics and performing time delay spectroscopic studies of systems of the microcosm. The majority of these studies were performed using XUV-XUV or XUV-IR pump-probe schemes involving interferometers (or wave front beam splitters) for introducing a delay between the pump and the probe pulses. However, these schemes suffer from the intrinsic limitations that accompany any pump-probe arrangement. In a pump-probe experiment the evolution of the system is obtained by multiple measurements at different time delays introduced between the pump-probe pulses during which all the experimental parameters must remain constant. Additionally, a pump-probe measurement with asec resolution suffers from spectroscopic limitations due to difficulties on maintaining the experimental parameters constant for long data acquisition times and long delays between the pump-probe pulses.

The aim of the research is to overcome these obstacles and develop an approach which provides "high" temporal (sub-fs) and spectral resolution (meV)  in a single-shot measurement. This will be achieved by means of time gated ion microscopy approach [1] where an Ion Microscope with spatial resolution in the range of ≈ 1 μm will be used to record the ion distribution produced a 2-XUV-photon ionization process at the focus of two counter propagated XUV pulses. Towards this direction we will use the 20-Gwatt XUV beam line that we have recently developed at FORTH.

[1] P. Tzallas, et al., J. Opt. 20, 024018 (2018).

In this direction, the research focuses on the development of new schemes for the generation of novel non-classical light states that will be used for novel investigations in quantum technology. In particular it targets: I) the development of a of quantum operations in a variety of intense laser-matter interactions, II) the generation of high photon number optical cat states with controllable quantum features and of “massively” entangled coherent state superposition, and III) the applications in quantum metrology/sensing, quantum communication and quantum information processing. This direction, is based on the recently developed method [1-3] with which a coherent light state superposition (optical Schrodinger cat states) has been produced by implementing "conditioning" approaches [4-6] in the high harmonic generation process induced by intense laser-atom interactions.

[1] M. Lewenstein, et al., Nature Phys. 17, 1104 (2021).

[2] J. Rivera-Dean, et al., Phys. Rev. A, 105, 033714 (2022).

[3] P. Stammer et al., Phys. Rev. Lett.122, 123603 (2022).

[4] N. Tsatrafyllis, et al., Nature Comms8, 15170 (2017).

[5] N. Tsatrafyllis, et al.,  Phys. Rev. Lett.122, 193602 (2019).

[6] J. Rivera-Dean, et al., J. Comput. Electr.  20, 2111 (2021).

Strong laser fields and their power to generate controllable high-photon-number coherent-state superpositions
J. Rivera-Dean, Th. Lamprou, E. Pisanty, P. Stammer, A. F. Ordóñez, A. S. Maxwell, M. F. Ciappina, M. Lewenstein, and P. Tzallas
Phys. Rev. A, Volume:105, Page:105, Year:2022, DOI:doi.org/10.1103/PhysRevA.105.033714
High Photon Number Entangled States and Coherent State Superposition from the Extreme Ultraviolet to the Far Infrared
P. Stammer, J. Rivera-Dean, Th. Lamprou, E. Pisanty, M. F. Ciappina, P. Tzallas, and M. Lewenstein
Phys. Rev. Lett., Volume:128, Page:123603, Year:2022, DOI:doi.org/10.1103/PhysRevLett.128.123603
New schemes for creating large optical Schrödinger cat states using strong laser fields
J. Rivera‑Dean, P. Stammer, E. Pisanty, Th. Lamprou, P. Tzallas, M. Lewenstein, M. F. Ciappina
Journal of Computational Electronics, Volume:20, Page:2111, Year:2021, DOI:doi.org/10.1007/s10825-021-01789-2
Generation of optical Schrödinger cat states in intense laser–matter interactions
M. Lewenstein, M. F. Ciappina, E. Pisanty, J. Rivera-Dean, P. Stammer, Th. Lamprou and P. Tzallas
Nature Physics, Volume:17, Page:1104, Year:2021, DOI:doi.org/10.1038/s41567-021-01317-w
A perspective on high photon flux nonclassical light and applications in nonlinear optics
Th. Lamprou, I. Liontos, N. C. Papadakis, and P. Tzallas
High Power Laser Science and Engineering, Volume:8, Page:e42, Year:2020, DOI:doi.org/10.1017/hpl.2020.44
Strong-field effects induced in the extreme ultraviolet domain
I. Makos, I. Orfanos, E. Skantzakis, I. Liontos, P. Tzallas, A. Forembski, L. A. A. Nikolopoulos, and D. Charalambidis
High Power Laser Science and Engineering, Volume:8, Page:e44, Year:2020, DOI:doi.org/10.1017/hpl.2020.43
Non-linear processes in the extreme ultraviolet
I. Orfanos, I. Makos, I. Liontos, E. Skantzakis, B. Major, A. Nayak, M. Dumergue, S. Kühn, S. Kahaly, K. Varju, G. Sansone, B. Witzel, C. Kalpouzos, L. A. A. Nikolopoulos, P. Tzallas and D. Charalambidis
J. Phys. Photonics, Volume:2, Page:042003, Year:2020, DOI:doi.org/10.1088/2515-7647/aba172
Saddle point approaches in strong field physics and generation of attosecond pulses
A. Nayak, M. Dumergue, S. Kühn, S. Mondal, T. Csizmadia, N.G. Harshitha, M. Füle, M. U. Kahaly, B. Farkas, B. Major, V. Szaszkó-Bogár, P. Földi, S. Majorosi, N. Tsatrafyllis, E. Skantzakis, L. Neoričić, M. Shirozhan, G. Vampa, K. Varjú, P. Tzallas, G. Sansone, D. Charalambidis and S. Kahaly
Physics Reports, Volume:833, Page:1, Year:2020, DOI:doi.org/10.1016/j.physrep.2019.10.002
Carrier-envelope-phase measurement of few-cycle mid-infrared laser pulses using high harmonic generation in ZnO
R. Hollinger, D. Hoff, P. Wustelt, S. Skruszewicz, Y. Zhang, H. Kang, D. Würzler, T. Jungnickel, M. Dumergue, A. Nayak, R. Flender, L. Haizer, M. Kurucz, B. Kiss, S. Kühn, E. Cormier, C. Spielmann, G. G. Paulus, P. Tzallas, and M. Kübel
Optics Express, Volume:28, Page:7314, Year:2020, DOI:doi.org/10.1364/OE.383484
A 10-gigawatt attosecond source for non-linear XUV optics and XUV-pump-XUV-probe studies
I. Makos, I. Orfanos, A. Nayak, J. Peschel, B. Major, I. Liontos, E. Skantzakis, N. Papadakis, C. Kalpouzos, M. Dumergue, S. Kühn, K. Varju, P. Johnsson , A. L’Huillier, P. Tzallas & D. Charalambidis
Sci. Rep., Volume:10, Page:3759, Year:2020, DOI:doi.org/10.1038/s41598-020-60331-9
Attosecond pulse metrology
I. Orfanos, I. Makos, I. Liontos, E. Skantzakis, B. Förg, D. Charalambidis, and P. Tzallas
APL Photonics, Volume:4, Page:080901, Year:2019, DOI:doi.org/10.1063/1.5086773
Quantum path interferences in high-order harmonic generation from aligned diatomic molecules
S. Chatziathanasiou, I. Liontos, E. Skantzakis, S. Kahaly, M. Upadhyay Kahaly, N. Tsatrafyllis, O. Faucher, B. Witzel, N. Papadakis, D. Charalambidis, and P. Tzallas
Phys. Rev. A, Volume:100, Page:061404(R), Year:2019, DOI:doi.org/10.1103/PhysRevA.100.061404
Quantum Optical Signatures in a Strong Laser Pulse after Interaction with Semiconductors
N. Tsatrafyllis, S. Kühn, M. Dumergue, P. Foldi, S. Kahaly, E. Cormier, I. A. Gonoskov, B. Kiss, K. Varju, S. Varro, and P. Tzallas
Phys. Rev. Lett., Volume:122, Page:193602, Year:2019, DOI:doi.org/10.1103/PhysRevLett.122.193602
Imaging the source of high-harmonics generated in atomic gas media
S. Chatziathanasiou, S. Kahaly, D. Charalambidis, P. Tzallas, and E. Skantzakis
Optics Express, Volume:27, Page:9733, Year:2019, DOI:doi.org/10.1364/OE.27.009733
Towards intense isolated attosecond pulses from relativistic surface high harmonics
O. Jahn, V. E. Leshchenko, P. Tzallas, A. Kessel, M. Krüger, A. Münzer, S. A. Trushin, G. D. Tsakiris, S. Kahaly, D. Kormin, L. Veisz, V. Pervak, F. Krausz, Zs. Major, and S. Karsch
Optica, Volume:6, Page:280, Year:2019, DOI:doi.org/10.1364/OPTICA.6.000280
Propagation-enhanced generation of intense high-harmonic continua in the 100-eV spectral region
D. E. Rivas, B. Major, M. Weidman, W. Helml, G. Marcus, R. Kienberger, D. Charalambidis, P. Tzallas, E. Balogh, K. Kovács, V. Tosa, B. Bergues, K. Varjú, and L. Veisz,
Optica , Volume:5, Page:1283, Year:2018, DOI:doi.org/10.1364/OPTICA.5.001283
Multiple ionization of Argon via multi-XUV photon absorption induced by 20-GW high-order harmonic laser pulses
A. Nayak, I. Orfanos, I. Makos, M. Dumergue, S. Kühn, E. Skantzakis, B. Bodi, K. Varju, C. Kalpouzos, H. I. B. Banks, A. Emmanouilidou, D. Charalambidis, and P. Tzallas
Phys.Rev.A, Volume:98, Page:023426, Year:2018, DOI:https://doi.org/10.1103/PhysRevA.98.023426
Tabletop nonlinear optics in the 100-eV spectral region
B. Bergues, D. E. Rivas, M. Weidman, A. A. Muschet, W. Helml, A. Guggenmos, V. Pervak, U. Kleineberg, G. Marcus, R. Kienberger, D. Charalambidis, P. Tzallas, H. Schröder, F. Krausz, and L. Veisz,
Optica, Volume:5, Page:237-242, Year:2018, DOI:doi.org/10.1364/OPTICA.5.000237
Time gated ion microscopy of light-atom interactions
P. Tzallas, B. Bergues, D. Rompotis, N. Tsatrafyllis, S. Chatziathanasiou, A. Muschet, L. Veisz, H. Schröder and D. Charalambidis
J. Opt, Volume:20 , Page:024018, Year:2018 , DOI:doi.org/10.1088/2040-8986/aaa326
Next Generation Driver for Attosecond and Laser-plasma Physics
D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S.-w. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz and L. Veisz
Scientific Reports, Volume:7, Page:5224 , Year:2017, DOI:doi.org/10.1038/s41598-017-05082-w
The ELI-ALPS facility: the next generation of attosecond sources
Sergei Kühn, Mathieu Dumergue, Subhendu Kahaly, Sudipta Mondal, Miklós Füle, Tamás Csizmadia, Balázs Farkas, Balázs Major, Zoltán Várallyay, Eric Cormier, Mikhail Kalashnikov, Francesca Calegari, Michele Devetta, Fabio Frassetto, Erik Månsson, Luca Poletto, Salvatore Stagira, Caterina Vozzi, Mauro Nisoli, Piotr Rudawski, Sylvain Maclot, Filippo Campi, Hampus Wikmark, Cord L Arnold, Christoph M Heyl, Per Johnsson, Anne L'Huillier, Rodrigo Lopez-Martens, Stefan Haessler, Maïmona Bocoum, Frederik Boehle, Aline Vernier, Gregory Iaquaniello, Emmanuel Skantzakis, Nikos Papadakis, Constantinos Kalpouzos, Paraskevas Tzallas, Franck Lépine, Dimitris Charalambidis, Katalin Varjú, Károly Osvay and Giuseppe Sansone
J. Phys. B: At. Mol. Opt. Phys, Volume:50, Page:132002, Year:2017, DOI:doi.org/10.1088/1361-6455/aa6ee8
Generation of Attosecond Light Pulses from Gas and Solid State Media
Stefanos. Chatziathanasiou, Subhendu. Kahaly, Emmanouil. Skantzakis, Giuseppe. Sansone , Rodrigo. Lopez-Martens, Stefan. Haessler, Katalin. Varju , George. D. Tsakiris, Dimitris. Charalambidis and Paraskevas. Tzallas,
Photonics, Volume:4, Issue:2, Page:26, Year:2017, DOI:10.3390/photonics4020026
High-order harmonics measured by the photon statistics of the infrared driving-field exiting the atomic medium
N. Tsatrafyllis, I.K. Kominis, I.A. Gonoskov and P. Tzallas
Nat. Commun., Volume:8, Page:15170, Year:2017, DOI:10.1038/ncomms15170
Polarization shaping of high-order harmonics in laser-aligned molecules
E. Skantzakis, S. Chatziathanasiou, P. A. Carpeggiani, G. Sansone, A. Nayak, D. Gray, P. Tzallas, D. Charalambidis, E. Hertz & O. Faucher,
Scientific Reports, Volume:6, Page:39295, Year:2016, DOI:10.1038/srep39295
Quantum optical signatures in high-field laser physics: Infrared photon counting in high order harmonics
I. A. Gonoskov, N. Tsatrafyllis, I. K. Kominis and P. Tzallas
Scientific Reports , Volume:6, Page:32821 , Year:2016, DOI:https://dx.doi.org/10.1038%2Fsrep32821
The ion microscope as a tool for quantitative measurements in the extreme ultraviolet
N. Tsatrafyllis, B. Bergues, H. Schröder, L. Veisz, E. Skantzakis, D. Gray, B. Bodi, S. Kuhn, G. D. Tsakiris, D. Charalambidis & P. Tzallas
Sci Rep. , Volume:6, Page:21556, Year:2016, DOI:10.1038/srep21556
Advantages in high-order harmonic generation sources for time resolved investigations
Reduzzi, M., Carpeggiani, P., Kühn, S., Calegari, F., Nisoli, M., Stagira, S., Vozzi, C., Dombi, P., Kahaly, S., Tzallas, P., Charalambidis, D., Varju, K., Osvay, K., Sansone, G.
J. El. Spec. Rel. Phen. , Volume:204, Page:257 , Year:2015, DOI: https://doi.org/10.1016/j.elspec.2015.09.002
Chiral Cavity Ring Down Polarimetry: Chirality and magnitometry measurements using signal reversals
L. Bougas, D. Sofikitis, G. E. Katsoprinakis, A. K. Spiliotis. P. Tzallas, B. Loppinet, and T. P. Rakitzis
J. Phys. Chem. , Volume:143, Page:104202, Year:2015, DOI:https://doi.org/10.1063/1.4930109
Quantum-optical nature of the recollision process in high-order-harmonic generation
I.K. Kominis, G. Kolliopoulos, D. Charalambidis and P. Tzallas
Phys. Rev. A, Volume:89, Page:063867, Year:2014, DOI:10.1103/PhysRevA.89.063827
Single shot autocorrelator for extreme-ultraviolet radiation
G. Kolliopoulos, P. Tzallas, B. Buerges, P. A. Carpeggiani, P. Heissler, H. Schroder, L. Veisz, D. Charalambidis and G. D. Tsakiris
J. Opt. Soc. Am. A, Volume:31, Page:926, Year:2014, DOI:10.1364/JOSAB.31.000926
Revealing Quantum path details in high-field physics
G. Kolliopoulos, B. Bergues, H. Schroder, P. A. Carpeggiani, G. D. Tsakiris, D. Charalambidis and P. Tzallas
Phys. Rev. A, Volume:90, Page:013822, Year:2014, DOI:10.1103/PhysRevA.90.013822
Disclosing one-femtosecond scale intrinsic molecular dynamics through extreme-ultraviolet pump-probe measurements
P. A. Carpeggiani, P. Tzallas, A. Palacios, D. Gray, F. Martín and D. Charalambidis
Phys.Rev.A, Volume:89, Page:023420, Year:2014, DOI:dx.doi.org/10.1103/PhysRevA.89.023420
A compact collinear polarization gating scheme for many cycle laser pulses
G. Kolliopoulos, P. A. Carpeggiani, D. Rompotis, D. Charalambidis and P. Tzallas
Rev. Sci. Instrum., Volume:83, Issue:6, Page:063102, Year:2012, DOI:10.1063/1.4725590
Two-photon above-threshold ionization using extreme-ultraviolet harmonic emission from relativistic laser–plasma interaction
P. Heissler, P. Tzallas, J. M. Mikhailova, K. Khrennikov, L. Waldecker, F. Krausz, S. Karsch, D. Charalambidis, G. D. Tsakiris
New J Phys, Volume:14, Page:043025, Year:2012, DOI:10.1088/1367-2630/14/4/043025
Few-Cycle Driven Relativistically Oscillating Plasma Mirrors: A Source of Intense Isolated Attosecond Pulses
P. Heissler, R. Horlein, J. M. Mikhailova, L. Waldecker, P. Tzallas, A. Buck, K. Schmid, C. M. S. Sears, F. Krausz, L. Veisz, M. Zepf and G. D. Tsakiris,
Phys. Rev. Letter, Volume:108, Page:235003, Year:2012, DOI:10.1103/PhysRevLett.108.235003
Direct two-XUV-photon double ionization in xenon
P. Tzallas, E. Skantzakis, D. Charalambidis
J. Phys. B, Volume:45, Page:074007, Year:2012, DOI:10.1088/0953-4075/45/7/074007
Extreme-ultraviolet pump-probe studies of one femtosecond scale electron dynamics
P. Tzallas, E. Skantzakis, L.A.A. Nikolopoulos, G. D. Tsakiris, D. Charalambidis
Nat. Phys., Volume:7, Page:781–784, Year:2011, DOI:10.1038/nphys2033
Measuring the absolute carrier-envelope phase of many-cycle laser fields
P. Tzallas, E. Skantzakis, D. Charalambidis
Phys. Rev. A, Volume:82, Page:061401R, Year:2010, DOI:10.1103/PhysRevA.82.061401
Persistent quantum interfering electron trajectories
J. E. Kruse, P. Tzallas, E. Skantzakis, and D. Charalambidis
Phys. Rev. A, Volume:82, Page:033438, Year:2010, DOI:10.1103/PhysRevA.82.033438
Inconsistencies between two attosecond pulse metrology methods: A comparative study
J. E. Kruse, P. Tzallas, E. Skantzakis, C. Kalpouzos, G. D. Tsakiris, D. Charalambidis
Phys. Rev. A, Volume:82, Page:021402(R), Year:2010, DOI:10.1103/PhysRevA.82.021402
Tracking autoionizing-wavepacket dynamics at 1-femtosecond temporal scale
E. Skantzakis, P. Tzallas, J. E. Kruse, C. Kalpouzos, O. Faucher, G. D. Tsakiris and D. Charalambidis,
Phys. Rev. Lett. , Volume:105, Page:043902, Year:2010, DOI:10.1103/PhysRevLett.105.043902
Temporal characterization of attosecond pulses emitted from solid-density plasmas
R. Horlein, Y. Nomura, P. Tzallas, S. G. Rykovanov, B. Dromey, J. Osterhoff, Zs Major, S. Karsch, L. Veisz, M. Zepf, D. Charalambidis, F. Krausz, G. Tsakiris,
New J Phys, Volume:12, Page:043020, Year:2010, DOI:10.1088/1367-2630/12/4/043020
Realization of time resolved two-VUV-photon ionization
A. Peralta Conde, J. Kruse, O. Faucher, P. Tzallas, E. P. Benis and D. Charalambidis
Phys. Rev. A, Volume:79, Page:061405R, Year:2009, DOI:10.1103/PhysRevA.79.06140
Four-dimensional investigation of the 2nd order volume autocorrelation technique
O. Faucher,A. P. Tzallas, E. P. Benis, Peralta Conde, J. Kruse, and D. Charalambidis,
Appl. Phys. B, Volume:97, Issue:505, Year:2009, DOI:10.1007/s00340-009-3559-z
Coherent continuum XUV radiation in the sub-100 nJ range generated by a high power many-cycle laser field
E. Skantzakis, P. Tzallas, J. Kruse, G. Maravelias, C. Kalpouzos and D. Charalambidis
Opt Lett., Volume:34, Issue:11, Page:1732, Year:2009, DOI:10.1364/OL.34.001732
On the population dynamics induced by an attosecond train interacting coherently with an atomic system within the electric dipole approximation
A. Peralta Conde, P. Tzallas and D. Charalambidis
Eur. Phys. J. D, Volume:51, Page:289, Year:2009, DOI:10.1140/epjd/e2009-00018-8
Attosecond phase locking of harmonics emitted from laser-produced plasmas
Y. Nomura, R. Hoerlein, P. Tzallas, B. Dromey, S. Rykovanov, Zs. Major, J. Osterhoff, S. Karsch, L. Veisz, M. Zepf, D. Charalambidis, F. Krausz and G. D. Tsakiris
Nat. Phys., Volume:5, Page:124, Year:2009, DOI:10.1038/nphys1155
Exploring intense attosecond pulses
D. Charalambidis, P. Tzallas, E. P. Benis, E. Skantzakis, G. Maravelias, L. A. A. Nikolopoulos, A. P. Conde, and G. D. Tsakiris,
New J Phys, Volume:10, Page:025018, Year:2008, DOI:10.1088/1367-2630/10/2/025018
Laser-induced field-free alignment of the OCS molecule
V. Loriot, P. Tzallas, E. P. Benis, E. Hertz, B. Lavorel, D. Charalambidis, and O. Faucher,
J. Phys. B, Volume:40, Page:2503, Year:2007, DOI:10.1088/0953-4075/40/12/023
Generation of intense continuum extreme-ultraviolet radiation by many-cycle laser fields
P. Tzallas, E. Skantzakis, C. Kalpouzos, E.P. Benis, G.D. Tsakiris and D. Charalambidis,
Nature Phys., Volume:3, Page:846–850, Year:2007, DOI:10.1038/nphys747
Full temporal reconstruction of a lower order harmonic superposition
P. Tzallas, E. Skantzakis, E.P. Benis, C. Kalpouzos, G.D. Tsakiris, and D. Charalambidis,
New J Phys, Volume:9, Page:232, Year:2007, DOI:10.1088/1367-2630/9/7/232
Two-photon double ionization of rare gases by a superposition of harmonics
E.P. Benis, D. Charalambidis, T.N. Kitsopoulos, G.D. Tsakiris, and P. Tzallas,
Phys. Rev. A, Volume:74, Page:051402, Year:2006, DOI:10.1103/PhysRevA.74.051402
Comment on "Photoionization of helium atoms irradiated with intense vacuum ultraviolet free-electron laser light. Part I. Experimental study of multiphoton and single-photon processes"
Dimitrios Charalambidis, P. Tzallas, N. A. Papadogiannis, L. A. A. Nikolopoulos, E. P. Benis, and G. D. Tsakiris
Phys. Rev. A, Volume:74, Page:037401 , Year:2006, DOI:10.1103/PhysRevA.74.037401
Frequency-resolved photoelectron spectra of two-photon ionization of He by an attosecond pulse train
E.P. Benis, P. Tzallas, L.A.A. Nikolopoulos, M. Kovacev, C. Kalpouzos, D. Charalambidis, and G. Tsakiris
New J Phys, Volume:8, Page:92, Year:2006, DOI:10.1088/1367-2630/8/6/092
Spectral phase distribution retrieval through coherent control of harmonic generation
E. Papalazarou, M. Kovacev, P. Tzallas, E.P. Benis, C. Kalpouzos, G.D. Tsakiris and D. Charalambidis,
Phys. Rev. Lett. , Volume:96, Issue:16, Page:163901, Year:2006, DOI:10.1103/PhysRevLett.96.163901
The attosecond-science frontiers: generation, metrology and path of applications
P. Tzallas, G. D. Tsakiris, K. Witte, L. A. A. Nikolopoulos, E. P. Benis, D. Charalambidis
J. Elect. Spec. Rel. Phenomena, Volume:144, Page:1129, Year:2005, DOI:https://doi.org/10.1016/j.elspec.2005.01.267
Attosecond pulse trains: generation, metrology and application perspectives
P. Tzallas, G. D. Tsakiris, K. Witte, L. A. A. Nikolopoulos, E. P. Benis, D. Charalambidis
Laser Physics, Volume:15, Issue:6, Page:821, Year:2005, DOI:NA
Second order autocorrelation of an XUV attosecond pulse train
L.A.A. Nikolopoulos, E.P. Benis, P. Tzallas, D. Charalambidis, K. Witte and G.D. Tsakiris,
Phys Rev Lett. , Volume:94, Issue:11, Page:113905, Year:2005, DOI:10.1103/PhysRevLett.94.113905
Second-order autocorrelation measurements of attosecond XUV pulse trains
P. Tzallas, D. Charalambidis, N.A. Papadogiannis, K. Witte, and G.D. Tsakiris,
J. Mod. Opt., Volume:52, Issue:2-3, Page:321, Year:2005, DOI:10.1080/09500340412331301533
Extending optical fs metrology to XUV attosecond pulses
P. Tzallas, K. Witte, G.D. Tsakiris, N.A. Papadogiannis, and D. Charalambidis,
Appl. Phys. A, Volume:79, Page:1673, Year:2004, DOI:10.1007/s00339-004-2680-4
Direct observation of attosecond light bunching
P. Tzallas, D. Charalambidis, N.A. Papadogiannis, K. Witte, and G. D. Tsakiris
Nature, Volume:426, Page:267–271, Year:2003, DOI:10.1038/nature02091
On the feasibility of performing non-linear autocorrelation with attosecond pulse trains
N.A. Papadogiannis, L.A.A. Nikolopoulos, D. Charalambidis, G. D. Tsakiris, P. Tzallas, and K. Witte,
Appl. Phys. B, Volume:46, Page:721, Year:2003, DOI:10.1007/s00340-003-1179-6
Recent developments in attosecond pulse train metrology
D. Charalambidis, N.A. Papadogiannis, P. Tzallas, G.D. Tsakiris, and K. Witte
Phys. Scr., Volume:2003, Page:23-26, Year:2003, DOI:10.1238/Physica.Topical.105a00023
Two-Photon Ionization of He through a Superposition of Higher Harmonics.
Papadogiannis NA1, Nikolopoulos LA, Charalambidis D, Tsakiris GD, Tzallas P, Witte K.
Phys. Rev. Letter, Volume:90, Issue:13, Page:133902, Year:2003, DOI:10.1103/PhysRevLett.90.133902
Attosecond scale multi-XUV-photon processes
D. Charalambidis, P. Tzallas, E. P. Benis, G. D. Tsakiris,
Year: 2009, ISBN:978-3-540-69142-6

Heads

Prof. Charalambidis Dimitris
Professor Emeritus
Dr. Tzallas Paraskevas
Research Director

Scientific Staff

Dr. Kalpouzos Constantinos
Senior application Scientist

Research Associates

Dr. Skantzakis Manolis
PostDoctoral Fellow

Students

Mr. Vassakis Emmanouil ( Manos )
Ph.D. student
Mr. Lambrou Theocharis
Ph.D. student

Alumni

Dr. Chatziathanasiou Stefanos
PostDoctoral Fellow
Dr. Tsatrafyllis Nikolaos
PostDoctoral Fellow
Dr. Liontos Ioannis
PostDoctoral Fellow
Mr. Makos Ioannis
Ph.D. student
Dr. Orfanos Ioannis
PostDoctoral Fellow
Dr. Gonoskov Ivan
PostDoctoral Fellow
Dr. Papadakis Nikolaos
Technician

Infrastructure Equipment

A double-stage operation Ti:S laser system of FORTH-IESL delivering I) 10Hz rep. rate, IR laser pulses of 20 fs duration and energy up to 350mJ/pulse and II) at 1kHz rep. rate, IR laser pulses of 35 fs duration and energy up to 3mJ/pulse

A newly constructed ≈ 18 m long 20-GWatt coherent XUV (HHG) beam line [Phys. Rev. A 98, 023426 (2018); Sci. Reports 10, 3759 (2020)] driven by the high power Ti:S laser system. The beam line provides asec/fs XUV pulses with the highest ever pulse energy (≈ 230 µJ per pulse) corresponding photon flux of 6 x 10^13 photons/pulse in the spectral region 17-33eV.

A 10 m long 100 MWatt coherent XUV beam line [Nature Phys. 7, 781 (2011)] driven by the high power Ti:S laser system. The beam line provides asec/fs XUV pulses with energy up to 1 μJ/pulse with corresponding flux 2x10^11 photons/pulse in the spectral range of 17-33 eV.