Position Description
Τεχνική υποστήριξη ρεο-οπτικών πειραμάτων σε ρευστές διεπιφάνειες για ενεργειακές εφαρμογές.
Πειραματικη φυσική χαλαρών διεπιφανειών, οργανολογία σχετική με πειράματα ρεολογίας και οπτικών παρατηρήσεων σε ρευστές διεπιφάνειες και μεταβαλλόμενες θερμοκρασίες.
Για το πλήρες κείμενο της πρόσκλησης ακολουθήστε τον σύνδεσμο 'Related Documents'
Required Qualifications
- Μεταπτυχιακό σε πειραματική φυσική
- Εμπειρία με οργανολογία (ηλεκτρονικά, μηχανουργείο)
- Εμπειρία με ρεομετρία και σκέδαση φωτός σε ρευστές διεπιφάνειες
- Γνώση Αγγλικών
- Ισχυρές ικανότητες επικοινωνίας
Application Procedure
ΑΠΑΡΑΙΤΗΤΑ ΔΙΚΑΙΟΛΟΓΗΤΙΚΑ
Στο φάκελο υποβολής της πρότασης θα πρέπει να εμπεριέχονται τα ακόλουθα:
- Αίτηση (form Greek στην αριστερή στήλη) με αναφορά στο πρόγραμμα και στον κωδικό της θέσης
- Αναλυτικό Βιογραφικό Σημείωμα
- Ευκρινή φωτοαντίγραφα τίτλων σπουδών
Οι ενδιαφερόμενοι καλούνται να υποβάλουν τις αιτήσεις τους και όλα τα απαραίτητα δικαιολογητικά, ηλεκτρονικά στη διεύθυνση hr@iesl.forth.gr με κοινοποίηση (cc): στον Καθηγ. Δημήτριο Βλασσόπουλο (dvlasso@iesl.forth.gr).
Οι αιτήσεις θα πρέπει να αποσταλούν με την ένδειξη: «Αίτηση στο πλαίσιο του προγράμματος ΑΕΝΑΟ, της πρόσκλησης εκδήλωσης ενδιαφέροντος με Α.Π. … και κωδικό θέσης … » (όπως αυτός αναφέρεται στον Πίνακα του Παραρτήματος)
Appointment Duration
6 μήνεςPosition Description
Ανάπτυξη Βιοαισθητήρων σε Δισδιάστατα υλικά
Για το πλήρες κείμενο της πρόσκλησης ακολουθήστε τον σύνδεσμο 'Related Documents'
Related Project
EPIGRAPH -Required Qualifications
- Πτυχίο Φυσικών Επιστημών ή Επιστήμης υλικών
- Εμπειρία στην ανάπτυξη αισθητήρων
- Εμπειρία στην ανάπτυξη αισθητήρων
- Δημοσιεύσεις σε αισθητήρες
- Άριστη γνώση της Αγγλικής γλώσσας
Application Procedure
Στο φάκελο υποβολής της πρότασης θα πρέπει να εμπεριέχονται τα ακόλουθα:
- Αίτηση (form Greek στην αριστερή στήλη) με αναφορά στον κωδικό της θέσης
- Αναλυτικό Βιογραφικό Σημείωμα
- Ευκρινή φωτοαντίγραφα τίτλων σπουδών
ΥΠΟΒΟΛΗ ΠΡΟΤΑΣΕΩΝ
Οι ενδιαφερόμενοι καλούνται να υποβάλουν τις αιτήσεις τους και όλα τα απαραίτητα δικαιολογητικά, ηλεκτρονικά στη διεύθυνση hr@iesl.forth.gr με κοινοποίηση (cc): στον Δρ Εμμ. Στρατάκη (stratak@iesl.forth.gr).
Οι αιτήσεις θα πρέπει να αποσταλούν με την ένδειξη: «Αίτηση στο πλαίσιο του προγράμματος EPIGRAPH και της πρόσκλησης εκδήλωσης ενδιαφέροντος με Α.Π. … και κωδικό θέσης … » (όπως αυτός αναφέρεται στον Πίνακα του Παραρτήματος).
Appointment Duration
6 μήνεςPosition Description
CAD manufacturing using lasers
For the full announcement, follow the link "Related Documents"
Related Project
BioCombs4Nanofibers -Required Qualifications
- BSc degree in Engineering
- Experience in CAD design and programs for manufacturing
- Experience in programming languages, such as C, C++ and g-code
- Experience in quality control
Application Procedure
Interested candidates who meet the aforementioned requirements are kindly asked to submit their applications to the address (hr@iesl.forth.gr), with cc to the Scientific Coordinator Dr Emmanuel Stratakis (stratak@iesl.forth.gr).
In order to be considered, the application must include:
- Application Form (Form Greek or Form English to the left)
- Detailed curriculum vitae (CV) of the candidate
- Scanned Copies of academic titles
Appointment Duration
6 monthsFunding

Position Description
Optical Memristors are disruptive photonic elements which have attracted significant attention during the last few years, while offering unique switching and memory-like characteristics, for driving the future optical networks and sensing systems. The FORTH-SYNERGY project Optical Memristors, based on Photo-fluidity, Chalcogenide Whispering Gallery Mode Cavities (OMEGA) proposes the elaboration of an optical memristive component, fusing together the exotic photo-sensitivity properties of chalcogenide glasses (ChGs) and the extreme power accumulation and modal state density of whispering gallery modes (WGMs) resonation inside spheroid microcavities.
A highly competitive, post-doctoral research fellow is sought for the project OMEGA, for 12 months initial contract, with an additional up to 12 months, extension foreseen upon performance. The successful candidate must have a PhD degree in Physics or Electrical/Electronic Engineering, with a strong experimental/theoretical background in Optical Fiber Devices and/or Whispering Gallery Mode systems, being proven by publications record, previous experience and/or thesis subject and reference letters. The applicants must provide at least two names (preferably three) of academics who can provide reference letters. Previous background on Glass science/photosensitivity will be considered as a strong asset. Applications without satisfying the above criteria will not being considered.
For the full announcement, follow the link "Related Documents"
Required Qualifications
- PhD degree in Physics or Engineering
- Experience in optical fiber devices
- Experience in whispering gallery mode systems/physics
- Materials/glass science/photosensitivity
- Working knowledge of English
Application Procedure
Applications received before July 3rd 2020 will receive immediate attention; however, applications will be reviewed thereafter until the position is filled.
Interested candidates who meet the aforementioned requirements are kindly asked to submit their applications to the address (hr@iesl.forth.gr), with cc to the Scientific Coordinator Dr Stavros Pissadakis (pissas@iesl.forth.gr).
In order to be considered, the application must include:
- Application Form (Form Greek or Form English to the left)
- Detailed CV and list of publications
- Names of three academic referees
- Scanned copies of academic titles
Applications will be reviewed till the position is filled
Appointment Duration
12 monthsAbstract
SnS crystals (Tin Sulfide), item:1
Tin Selenide (SnSe), item:1
Germanium Sulphide (GeS), item:1
Tungsten Disulfide (WS2), item:1
Tungsten Diselenide (WSe2), item:1
h-BN (Large size), item:1
Technical Characteristics
SnS crystals (Tin Sulfide), item:1
Characteristics of vdW SnS crystals
Crystal size: 10mm or larger
Materials properties: Indirect gap semiconductor
Crystal structure: Hexagonal
Unit cell parameters: a = b = 0.368, c= 0.582 nm, α = β = 900, γ = 1200
Growth method: [Default] Flux zone (no halide contamination) defect free
[Optional chemical vapor transport] Halide contamination is common
Purity: 99.9999% confirmed
Tin Selenide (SnSe), item:1
SnSe single crystals characteristics
Crystal size: 1cm in size
Materials properties: Thermoelectric semiconductor (anisotropic semiconductor)
Crystal structure: Pnma [62]
Unit cell parameters: a = 0.421nm, b = 0.452 nm, c= 1.181 nm, α = β = γ = 900
Growth method: Bridgman growth technique
Purity: 99.9999% confirmed
Germanium Sulphide (GeS), item:1
Crystal size: Larger than 1cm
Materials properties: 1.65 eV semiconductor, anisotropic 2D material
Crystal structure: Orthorhombic
Unit cell parameters: a = 1.453, b = 0.365nm, c= 0.435 nm, α = β = γ =900
Growth method: Flux zone (guaranteed no halide contamination)
[On request: chemical vapor transport (CVT) contains Br2, Cl2, TeCl4, and other halides]
Purity: 99.9999% confirmed
For the cases of Tin Sulfide (SnS), Tin Selenide (SnSe) and Germanium Sulphide (GeS), high quality bulk crystals are required for series of experiments. There are reports with different experimental results for these crystals indicating that products differ with respect to the company that develops them. We have preliminary results using crystals from “2D semiconductors” and for consistency we would like to purchase from the same company.
Tungsten Disulfide (WS2), item:1
Typical characteristics of WS2 crystals from 2Dsemiconductors
Crystal size: ~1cm in size
Dopants: Undoped (intrinsic semiconductor)
Materials properties: 2.02 eV emission (300K), direct gap semiconductor
Crystal structure: Hexagonal phase
Unit cell parameters: a = b = 0.317nm, c= 1.230 nm, α = β = 900 , γ = 1200
Growth method: [Default] Flux zone (no halide contamination) defect free
[Optional CVT]: Contains Br2, Cl2, TeCl4, and other halidesPurity: 99.9999% confirmed
Purity: 99.9999% confirmed
Tungsten Diselenide (WSe2), item:1
Characteristics of WSe2 crystals from 2Dsemiconductors USA
Crystal size: ~1cm in size
Dopants: Undoped (intrinsic semiconductor)
Materials properties: 1.62 eV emission (300K), direct gap semiconductor
Crystal structure: Hexagonal phase
Unit cell parameters: a = b = 0.331nm, c= 1.298 nm, α = β = 900 , γ = 1200
Growth method: [Default] Flux zone (no halide contamination) defect free
[Optional CVT]: Contains Br2, Cl2, TeCl4, and other halides
Purity: 99.9999% confirmed
h-BN (Large size), item:1
The properties of large size h-BN crystals
Sample size: Contains 3-4 crystals. Each measure < 5mm in size
Materials properties: 2D dielectric / insulator
Production method: Epitaxial solidification technique
Characterization method: SIMS, XRD, EDS, Raman (see product images)
For the cases of WS2, WSe2 and h-BN crystals, adding to consistency which is important to our experiments as we stated before, we would like to acquire crystals grown with flux zone method. We want to study the communication between flake of different crystals and it is reported that this phenomenon is more likely to happen for crystals grown with the referred method. “2D Semiconductors” offer high quality flux zone crystals that we think will be the optimal choice for our experiments.
Procedure
SnS crystals (Tin Sulfide), item:1
Characteristics of vdW SnS crystals
Crystal size: 10mm or larger
Materials properties: Indirect gap semiconductor
Crystal structure: Hexagonal
Unit cell parameters: a = b = 0.368, c= 0.582 nm, α = β = 900, γ = 1200
Growth method: [Default] Flux zone (no halide contamination) defect free
[Optional chemical vapor transport] Halide contamination is common
Purity: 99.9999% confirmed
Tin Selenide (SnSe), item:1
SnSe single crystals characteristics
Crystal size: 1cm in size
Materials properties: Thermoelectric semiconductor (anisotropic semiconductor)
Crystal structure: Pnma [62]
Unit cell parameters: a = 0.421nm, b = 0.452 nm, c= 1.181 nm, α = β = γ = 900
Growth method: Bridgman growth technique
Purity: 99.9999% confirmed
Germanium Sulphide (GeS), item:1
Crystal size: Larger than 1cm
Materials properties: 1.65 eV semiconductor, anisotropic 2D material
Crystal structure: Orthorhombic
Unit cell parameters: a = 1.453, b = 0.365nm, c= 0.435 nm, α = β = γ =900
Growth method: Flux zone (guaranteed no halide contamination)
[On request: chemical vapor transport (CVT) contains Br2, Cl2, TeCl4, and other halides]
Purity: 99.9999% confirmed
For the cases of Tin Sulfide (SnS), Tin Selenide (SnSe) and Germanium Sulphide (GeS), high quality bulk crystals are required for series of experiments. There are reports with different experimental results for these crystals indicating that products differ with respect to the company that develops them. We have preliminary results using crystals from “2D semiconductors” and for consistency we would like to purchase from the same company.
Tungsten Disulfide (WS2), item:1
Typical characteristics of WS2 crystals from 2Dsemiconductors
Crystal size: ~1cm in size
Dopants: Undoped (intrinsic semiconductor)
Materials properties: 2.02 eV emission (300K), direct gap semiconductor
Crystal structure: Hexagonal phase
Unit cell parameters: a = b = 0.317nm, c= 1.230 nm, α = β = 900 , γ = 1200
Growth method: [Default] Flux zone (no halide contamination) defect free
[Optional CVT]: Contains Br2, Cl2, TeCl4, and other halidesPurity: 99.9999% confirmed
Purity: 99.9999% confirmed
Tungsten Diselenide (WSe2), item:1
Characteristics of WSe2 crystals from 2Dsemiconductors USA
Crystal size: ~1cm in size
Dopants: Undoped (intrinsic semiconductor)
Materials properties: 1.62 eV emission (300K), direct gap semiconductor
Crystal structure: Hexagonal phase
Unit cell parameters: a = b = 0.331nm, c= 1.298 nm, α = β = 900 , γ = 1200
Growth method: [Default] Flux zone (no halide contamination) defect free
[Optional CVT]: Contains Br2, Cl2, TeCl4, and other halides
Purity: 99.9999% confirmed
h-BN (Large size), item:1
The properties of large size h-BN crystals
Sample size: Contains 3-4 crystals. Each measure < 5mm in size
Materials properties: 2D dielectric / insulator
Production method: Epitaxial solidification technique
Characterization method: SIMS, XRD, EDS, Raman (see product images)
For the cases of WS2, WSe2 and h-BN crystals, adding to consistency which is important to our experiments as we stated before, we would like to acquire crystals grown with flux zone method. We want to study the communication between flake of different crystals and it is reported that this phenomenon is more likely to happen for crystals grown with the referred method. “2D Semiconductors” offer high quality flux zone crystals that we think will be the optimal choice for our experiments.
Contact Persons
Special Issue Editor
Dr. Paraskevas Tzallas1,2
Guest Editor
1Research Director at the Foundation for Research and Technology – Hellas, Institute of Electronic Structure and Laser (FORTH-IESL), Heraklion (Crete), Greece
2Scientific Advisor, Secondary Sources Division, ELI-ALPS, Szeged, Hungary
Special Issue Information
Dear Colleagues,
Quantum optics and strong laser-field physics are two distinct major research domains founded on the quantum and classical description of the electromagnetic radiation, respectively. In quantum optics, the majority of the studies are performed using weak electromagnetic fields where the interaction is described by fully quantized theories. This research domain has led to fascinating achievements in the field of quantum technology, advancing studies ranging from quantum communication/information/computation, atomic physics, visual science to high-precision interferometry applied for the detection of gravitational waves, with non-classical light sources playing a vital role in these advancements. Strong laser-field physics studies, on the other hand, are nominally performed using intense laser fields where the interaction is described by semi-classical approaches. This research domain has paved the way for extensive and pioneering investigations ranging from ultra-relativistic optics and particle acceleration to extreme ultraviolet/x-ray generation and attosecond science. Recent accomplishments in the quantum optical description of strong laser-field–matter interactions and the generation of novel non-classical light sources have demonstrated that these seemingly disjointed research domains can be synthesized, depicting the potential for exciting new research in strong-field physics and quantum technology.
In this context, this Special Issue welcomes articles addressing, among others, the following main topics: I) fully quantized descriptions of interactions in the strong-field region (relativistic optics, laser-particle acceleration, laser–plasma, interactions, laser–atom interactions, high harmonic generation, etc.) and II) the use of high photon flux non-classical light sources for investigations in non-linear optics (multiphoton processes, harmonic generation, spectroscopy, visual science, etc.).
Dr. Paraskevas Tzallas
Guest Editor
Strong laser-field physics and quantum-optics, are two seemingly distinct research domains founded on the classical and quantum description of the electromagnetic radiation, respectively. Nowadays, the understanding of the electrodynamics induced in matter by strong electromagnetic fields, is based on semi-classical approaches. Although these approaches have been used in multidisciplinary research directions in ultrafast optoelectronics they do not provide any access in the quantum optical nature of the interaction as they treat the driving-field classically and unaffected by the interaction.
The aim of the research is to connect these two distinct modern research domains namely Quantum Technology and Attosecond Science. Specifically, the research focuses on the description of the sub-cycle quantum electrodynamics of strongly laser driven materials, the development of quantum optical approaches for studies in the ultrafast XUV range and the development of new schemes for generating non-classical light sources.
Recently we have developed a theoretical approach for the quantum optical description of strong-field laser-atom interaction [1], which has been followed up by the experimental development of a "Quantum optical XUV spectrometer" [2] used for studies of "sub-cycle quantum electrodynamics of strongly laser-driven semiconductors" [3].
[1] I. A. Gonoskov, et al., Sci. Rep. 6, 32821 (2016).
[2] N. Tsatrafyllis, et al., Nature Commun. 8, 15170 (2017).
[3] N. Tsatrafyllis et al., Phys. Rev. Lett. 122, 193602 (2019).