Position Description
Μελέτη φωτοχημείας κατά την αλληλεπίδραση της Λέιζερ-ύλης
Για το πλήρες κείμενο της πρόσκλησης ακολουθήστε τον σύνδεσμο 'Related Documents'
Related Project
Lasergraph -Required Qualifications
- Διδακτορικό σε συναφές πεδίο με το αντικείμενο της θέσης
- Εργαστηριακή Εμπειρία στο αντικείμενο της θέσης
- Δημοσιεύσεις στο αντικείμενο της θέσης
- Άριστη Γνώση της Αγγλικής Γλώσσας
Application Procedure
Στο φάκελο υποβολής της πρότασης κάθε ενδιαφερόμενου θα πρέπει να εμπεριέχονται τα ακόλουθα:
- Αίτηση (form Greek στην αριστερή στήλη) με αναφορά όνομα του προγράμματος και στον κωδικό της θέσης
- Αναλυτικό Βιογραφικό Σημείωμα
- Ευκρινή φωτοαντίγραφα τίτλων σπουδών
ΥΠΟΒΟΛΗ ΠΡΟΤΑΣΕΩΝ
Οι ενδιαφερόμενοι καλούνται να υποβάλουν τις αιτήσεις τους και όλα τα απαραίτητα δικαιολογητικά, ηλεκτρονικά στη διεύθυνση hr@iesl.forth.gr με κοινοποίηση (cc): στον Δρ Εμμ. Στρατάκη (stratak@iesl.forth.gr. Οι αιτήσεις θα πρέπει να αποσταλούν με την ένδειξη: «Αίτηση στο πλαίσιο του προγράμματος LaserGraph και της πρόσκλησης εκδήλωσης ενδιαφέροντος με Α.Π. … και κωδικό θέσης … » (όπως αυτός αναφέρεται στον Πίνακα του Παραρτήματος).
Appointment Duration
6 μήνεςFunding


Dr. Eleni Pavlopoulou is Assistant Researcher (Researcher, grade C) at the Institute of Electronic Structure and Laser, of the Foundation for Research and Technology – Hellas. She studied Physics in the Aristotle University of Thessaloniki, Greece, and received a M.Sc. in Materials Physics from the same University. She holds a Ph.D. in Polymer Physics from the University of Crete, Greece. After completing her doctoral studies, she moved to Princeton University, USA, and the group of Prof. Y.-L. (Lynn) Loo where she was introduced in Organic Electronics. In 2011, she returned to Europe and joined the Laboratoire de Chimie des Polymères Organiques (LCPO) and the group of Prof. Hadziioannou in Bordeaux, France, holding a Marie Curie Individual Fellowship. Between September 2013 and August 2020 she was an Assistant Professor (Maître de Conférences) at the École Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP) of the Institut Polytechnique de Bordeaux (Bordeaux INP), carrying out her research in LCPO. She joined IESL-FORTH on September 2020, where she is leading the Polymer Electronics Laboratory.
Eleni's research focuses on the study of electrically active polymers for energy harvesting and bioelectronic applications. She has a long-standing experience in conducting, semi-conducting and ferroelectric/piezoelectric polymers, with an emphasis on the study of their processing-structure-function relationships. She is particularly recognized for her expertise on the structural characterizations of polymeric thin films and nanostructures by means of x-ray scattering (SAXS, WAXS, GIWAXS, GISAXS), and she is a regular visiting scientist at the ESRF and ALBA synchrotrons. She has hands-on experience in organic electronics device fabrication and performance characterizations.
Education
- 2021 - Habilitation à Diriger des Recherches, Université de Bordeaux, France
- 2009 - PhD in Materials Science and Technology, University of Crete, Greece
- 2004 - MSc in Materials Physics, Aristotle University of Thessaloniki, Greece
- 2002 - Bachelor in Physics, Aristotle University of Thessaloniki, Greece
Career
- 09/2020 - to date: Researcher at IESL-FORTH, Heraklion, Greece
- 09/2013 - 08/2020: Assistant Professor at ENSCBP - Bordeaux INP, Bordeaux, France
- 09/2011 - 08/2013: Marie Curie Post-doctoral Fellow at LCPO, Bordeaux, France
- 03/2010 - 07/2011: Post-doctoral Fellow at Princeton University, USA
Interests
- Conducting and Semiconducting Polymers
- Ferroelectric and Piezoelectric Polymers
- Organic Mixed Ionic-Electronic Conductors
- Polymer Electronics (photovoltaics, thermoelectrics, sensors)
- Bioelectronics
- Structure-Function Relationships
- X-ray Scattering (WAXS, SAXS, GIS)
Awards/Prizes/Distinctions
- 2021 - "Materials Horizons 2021 Outstanding Paper" Award. For the work on biohybrid plants with electronic routes, reported in Materials Horizons, 8, pp. 3295-3305 (2021)
- 2021 - Invited to the 2nd round of the ERC Consolidator Grants call
- 2013 - “La Recherche” Award, 10th edition, category Chemistry. For the work on the copolymer-based solar cells that is reported in Adv. Mater., 24(16), pp. 2196 - 2201 (2012)
- 2011 - Marie Curie Actions, Intra-European Fellowship – FP7-PEOPLE-2011-IEF
- 2007 - Best oral presentation award in the XXIII Panhellenic Conference on Solid State Physics & Materials Science
HEALTHSONAR project is aiming to develop a device based on ultra-low energy radio (UWB) technology to monitor sleep, gate and main indoor activity including falls. All those aspects of daily life are very crucial for the Quality of Life of several group of people including elders, patients with sleep disorders, patients with Parkinson, Multiple sclerosis and other movement disorders. The device is able to monitor both “low” (thorax and abdomen motion for heart rate and respiration) and “high” (walking) motion based on different transmission settings. The device works as an IoT device transmitting the data directly to the HEALTHSONAR cloud application where personalized machine learning methods are used to analyses user’s sleep phases and disorders. It can also be connected to the HEALTHSONAR mobile app to transmit data in real time for monitoring physiological signals such as respiration and heart rate, gait or activity measures, providing feedback to users.
Principal Investigator
Technical Staff
Research Associates
Funding

Intelligent Reliability 4.0 (iRel40) has the ultimate goal of improving reliability for electronic components and systems by reducing failure rates along the entire value chain. New methods to ensure reliability and prognosticate failures that occur in both manufacturing- and use phases will be developed in the project. iRel40 project is funded by H2020 program under the grant agreement Number 876659.
Principal Investigator
Scientific Staff
Technical Staff
Research Associates
Alumni
Funding

To: 23/09/2020 14:00
While known for a long time, antiferromagnetically ordered systems have previously been considered, as expressed by Louis Néel in his Nobel Prize Lecture, to be “interesting but useless”. However, since antiferromagnets potentially promises faster operation, enhanced stability with respect to interfering magnetic fields and higher integration due to the absence of dipolar coupling, they could potentially become a game changer for new spintronic devices. The zero net moment makes manipulation using conventional magnetic fields challenging. However recently, these materials have received renewed attention due to possible manipulation based on new approaches such as photons [1] or spin-orbit torques [2].
In this talk, we will present an overview of the key features of antiferromagnets to potentially functionalize their unique properties. This includes writing, reading and transporting information using antiferromagnets. We recently realized switching in the metallic antiferromagnet Mn2Au by intrinsic staggered spin-orbit torques [3,4] and characterize the switching properties by direct imaging. While switching by staggered intrinsic spin-orbit torques in metallic AFMs requires special structural asymmetry, interfacial non-staggered spin-orbit torques can switch multilayers of many insulating AFMs capped with heavy metal layers.
We probe switching and spin transport in selected collinear insulating antiferromagnets, such as NiO [5-7], CoO [8,9] and hematite [10,11]. In NiO and CoO we find that there are multiple switching mechanisms that result in the reorientation of the Néel vector and additionally effects related to electromigration of the heavy metal layer can obscure the magnetic switching [5,7,9]. For the spin transport, spin currents are generated by heating as resulting from the spin Seebeck effect and by spin pumping measurements and we find in vertical transport short (few nm) spin diffusion lengths [6,8]. For hematite, however, we find in a non-local geometry that spin transport of tens of micrometers is possible [10,11]. We detect a first harmonic signal, related to the spin conductance, that exhibits a maximum at the spin-flop reorientation, while the second harmonic signal, related to the Spin Seebeck conductance, is linear in the amplitude of the applied magnetic field [10]. The first signal is dependent on the direction of the Néel vector and the second one depends on the induced magnetic moment due to the field. We identify the domain structure as the limiting factor for the spin transport [11]. We recently also achieved transport in the easy plane phase [12], which allows us to obtain long distance spin transport in hematite even at room temperature [12]. From the power and distance dependence, we unambiguously distinguish long-distance transport based on diffusion [10,11] from predicted spin superfluidity that can potentially be used for logic [13].
A number of excellent reviews are available for further information on recent developments in the field [14].
References
[1] A. Kimel et al., Nature 429, 850 (2004).
[2] J. Zelezny et al., Phys. Rev. Lett. 113, 157201 (2014); P. Wadley et al., Science 351, 587 (2016).
[3] S. Bodnar et al., Nature Commun. 9, 348 (2018)
[4] S. Bodnar et al., Phys. Rev. B 99, 140409(R) (2019).
[5] L. Baldrati et al., Phys. Rev. Lett. 123, 177201 (2019)
[6] L. Baldrati et al., Phys. Rev. B 98, 024422 (2018); L. Baldrati et al. Phys. Rev. B 98, 014409 (2018)
[7] F. Schreiber et al., Appl. Phys. Lett. 117, 082401 (2020)
[8] J. Cramer et al., Nature Commun. 9, 1089 (2018)
[9] L. Baldrati et al., Phys. Rev. Lett. 125, 077201 (2020)
[10] R. Lebrun et al., Nature 561, 222 (2018).
[11] A. Ross et al., Nano Lett. 20, 306 (2020).
[12] R. Lebrun et al., arxiv:2005.14414 (2020).
[13] Y. Tserkovnyak et al., Phys. Rev. Lett. 119, 187705 (2017).
[14] Rev. Mod. Phys. 90, 15005 (2018); Nat. Phys. 14, 200-242 (2018); Adv. Mater. 32, 1905603 (2020)
Position Description
PhD student: Development of a hybrid optical and optoacoustic microscope system
Post-doc: Development of light propagation algorithms and tomographic reconstruction in optical and optoacoustic systems
For the full announcement, follow the link "Related Documents"
Required Qualifications
PhD student
- Degree in Physics or relevant fields
- MSc degree in a relevant field
- Excellent knowledge of wave control methods
- Experience in the development of optical setups with wave and beam control
- Knowledge of modern modeling methods in Matlab, Mathematica, Zeemax
- Research experience and active participation in research project
Post-doc
- Degree in Mathematics
- PhD degree in image reconstruction methods for medical imaging
- Excellent knowledge of light propagation theoretical models and digitization with finite elements
- Experience in biomedical imaging
- Excellent knowledge of modern image processing methods
- Research experience and active participation in research projects
Application Procedure
Interested candidates who meet the aforementioned requirements are kindly asked to submit their applications to the address (hr@iesl.forth.gr), with cc to the Scientific Coordinator, Dr Giannis Zacharakis (zahari@iesl.forth.gr).
In order to be considered, the application must include:
- Application Form (Form Greek or Form English to the left)
- Brief CV
- Scanned copies of academic titles
- Certificate for enrollment in a PhD program (for the PhD student position)
Appointment Duration
6 monthsPosition Description
Ανάπτυξη πειραματικής φορητής οπτοακουστικής συσκευής ανίχνευσης βιοδεικτών.
Για το πλήρες κείμενο της πρόσκλησης ακολουθήστε τον σύνδεσμο 'Related Documents'
Required Qualifications
- Πτυχίο Φυσικών Επιστημών
- Μεταπτυχιακό δίπλωμα ειδίκευσης στην οπτοηλεκτρονική-μικροηλεκτρονική
- Εκτεταμένη γνώση τεχνικών οπτικής παγίδευσης
- Αποδεδειγμένη εμπειρία στην διαχείριση ερευνητικών προγραμμάτων
Application Procedure
Στο φάκελο υποβολής της πρότασης θα πρέπει να εμπεριέχονται τα ακόλουθα:
- Αίτηση (form Greek στην αριστερή στήλη) με αναφορά στον κωδικό της θέσης και στο όνομα του προγράμματος
- Αναλυτικό Βιογραφικό Σημείωμα
- Ευκρινή φωτοαντίγραφα τίτλων σπουδών
- Πρόσφατη βεβαίωση σπουδών υποψήφιου διδάκτορα
ΥΠΟΒΟΛΗ ΠΡΟΤΑΣΕΩΝ
Οι ενδιαφερόμενοι καλούνται να υποβάλουν τις αιτήσεις τους και όλα τα απαραίτητα δικαιολογητικά, ηλεκτρονικά στη διεύθυνση hr@iesl.forth.gr με κοινοποίηση (cc): στον Δρ Ι. Ζαχαράκη (zahari@iesl.forth.gr). Οι αιτήσεις θα πρέπει να αποσταλούν με την ένδειξη: «Αίτηση στο πλαίσιο του προγράμματος INNOVA-PROTECT, της πρόσκλησης εκδήλωσης ενδιαφέροντος με Α.Π. … και κωδικό θέσης … » (όπως αυτός αναφέρεται στον Πίνακα του Παραρτήματος).