ΜΙΑ (1) ΘΕΣΗ ΥΠΟΨΗΦΙΟΥ ΔΙΔΑΚΤΟΡΑ ΣΤΟ ΠΡΟΓΡΑΜΜΑ 3D-ΤΟΠΟΣ
The deadline to apply for this position has expired.
Publication Date
29/10/2021
Application Deadline
13/11/2021
Position Category
Reference Number
2021_64159_
Salary
750 euro
Location
Herakleion, Crete, Greece
Contact Person
Start Date
01/01/2022

Position Description

Μοντελοποίηση HEMT, DC & RF μετρήσεις και εξαγωγή παραμέτρων συμπαγών μοντέλων για HEMTs

Για το πλήρες κείμενο της πρόσκλησης ακολουθήστε τον σύνδεσμο 'Related Documents'

Required Qualifications

  • Πτυχίο τμήματος Φυσικής  
  • MSc Ηλεκτρολόγου ή Ηλεκτρονικού Μηχανικού
  • Εμπειρία στην χρήση και παραμετροποίηση εργαστηριακού εξοπλισμού για πραγματοποίηση στατικών, δυναμικών και flicker noise μετρήσεων ημιαγωγικών διατάξεων καθώς και της αυτοματοποίησης τους κάνοντας χρήση γλωσσών προγραμματισμού(π.χ. PEL)
  • Εμπειρία στην χρήση εργαλείων μετρήσεων και χαρακτηρισμού ημιαγωγικών διατάξεων κατά προτίμηση στο Keysight ICCAP
  • Εμπειρία στην εξαγωγή παραμέτρων συμπαγών μοντέλων ημιαγωγικών διατάξεων σε commercial προσομοιωτές (π.χ. Cadence Spectre) για χρήση σε design kits για βιομηχανικές και ερευνητικές εφαρμογές

Application Procedure

Στο φάκελο υποβολής της πρότασης θα πρέπει να εμπεριέχονται τα ακόλουθα:

  • Αίτηση με αναφορά στον κωδικό της θέσης και στο όνομα του προγράμματος
  • Αναλυτικό Βιογραφικό Σημείωμα
  • Ευκρινή φωτοαντίγραφα τίτλων σπουδών
  • Πρόσφατη βεβαίωση σπουδών υποψήφιου διδάκτορα

 

ΥΠΟΒΟΛΗ ΠΡΟΤΑΣΕΩΝ

Οι ενδιαφερόμενοι καλούνται να υποβάλουν τις αιτήσεις τους και όλα τα απαραίτητα δικαιολογητικά, ηλεκτρονικά στη διεύθυνση hr@iesl.forth.gr με κοινοποίηση (cc): στον Δρ Γ. Κωνσταντινίδη (aek@physics.uoc.gr). Οι αιτήσεις θα πρέπει να αποσταλούν με την ένδειξη: «Αίτηση στο πλαίσιο του προγράμματος 3D-ΤΟΠΟΣ, της πρόσκλησης εκδήλωσης ενδιαφέροντος με Α.Π. … και κωδικό θέσης … » (όπως αυτός αναφέρεται στον Πίνακα του Παραρτήματος).

Appointment Duration

6 months
ΜΙΑ (1) ΘΕΣΗ ΤΕΧΝΙΚΟΥ ΕΡΕΥΝΑΣ ΣΤΟ ΠΡΟΓΡΑΜΜΑ 3D-ΤΟΠΟΣ
The deadline to apply for this position has expired.
Publication Date
29/10/2021
Application Deadline
13/11/2021
Position Category
Reference Number
2021_64159
Salary
Location
Herakleion, Crete, Greece
Contact Person
Start Date
01/01/2022

Position Description

Μοντελοποίηση ημιαγωγικών διατάξεων βασισμένων σε Keysight ICCAP

Για το πλήρες κείμενο της πρόσκλησης ακολουθήστε τον σύνδεσμο 'Related Documents'

 

Required Qualifications

  • Πτυχίο Ηλεκτρολόγου ή Ηλεκτρονικού Μηχανικού  
  • MSc Ηλεκτρολόγου ή Ηλεκτρονικού Μηχανικού  
  • Εμπειρία στην χρήση εργαστηριακού εξοπλισμού για πραγματοποίηση DC, CV , RF και flicker noise μετρήσεων ημιαγωγικών διατάξεων καθώς και της αυτοματοποίησης τους κάνοντας χρήση γλωσσών προγραμματισμού (π.χ. PEL, Python)  
  • Εμπειρία στην χρήση εργαλείων μετρήσεων και χαρακτηρισμού ημιαγωγικών διατάξεων κατά προτίμηση στο Keysight ICCAP  
  • Εμπειρία στην εξαγωγή παραμέτρων συμπαγών μοντέλων ημιαγωγικών διατάξεων σε commercial προσομοιωτές (π.χ. Cadence Spectre) για χρήση σε design kits για βιομηχανικές και ερευνητικές εφαρμογές  
  • Καλή γνώση Verilog-A γλώσσας για ανάπτυξη καινούργιων αλλά και προσαρμογή υπαρχόντων συμπαγών μοντέλων ημιαγωγικών διατάξεων

Application Procedure

Στο φάκελο υποβολής της πρότασης θα πρέπει να εμπεριέχονται τα ακόλουθα:

  • Αίτηση με αναφορά στον κωδικό της θέσης και στο όνομα του προγράμματος
  • Αναλυτικό Βιογραφικό Σημείωμα
  • Ευκρινή φωτοαντίγραφα τίτλων σπουδών

 

ΥΠΟΒΟΛΗ ΠΡΟΤΑΣΕΩΝ

Οι ενδιαφερόμενοι καλούνται να υποβάλουν τις αιτήσεις τους και όλα τα απαραίτητα δικαιολογητικά, ηλεκτρονικά στη διεύθυνση hr@iesl.forth.gr με κοινοποίηση (cc): στον Δρ Γ. Κωνσταντινίδη (aek@physics.uoc.gr). Οι αιτήσεις θα πρέπει να αποσταλούν με την ένδειξη: «Αίτηση στο πλαίσιο του προγράμματος 3D-ΤΟΠΟΣ, της πρόσκλησης εκδήλωσης ενδιαφέροντος με Α.Π. … και κωδικό θέσης … » (όπως αυτός αναφέρεται στον Πίνακα του Παραρτήματος).

Appointment Duration

6 μήνες
FLOW-INDUCED CRYSTALLIZATION OF POLYLACTIDES IN CAPILLARY FLOW
Event Dates
From: 10/11/2021 12:00
To: 10/11/2021 14:00
External Speaker
Prof. Savvas G. Hatzikiriakos (Dept. of Chemical and Biological Engineering, The University of British Columbia, Canada)
Place
Online Zoom Platform: https://us02web.zoom.us/j/84400274349?pwd=MVV6UlYrNDdWTERmQ092T3BoVUxVUT09

In this seminar the flow-induced crystallization (FIC) of two PLA with different microstructures (different L-lactic acid content) will be presented. The seminar will start with a general presentation of fundamental aspects of FIC and review previous work in the subject for polymeric systems such as PE, PP and PLA. The second part will present our recent work on FIC of PLA using simple shear, uniaxial extension and capillary flow experiments. In simple shear and capillary flow, increase in shear rate and decrease in temperature was found to enhance the crystallization kinetics particularly for Weissenberg numbers (based on the reptation relaxation time, Wi) greater than 1. On the other hand, in uniaxial extensional flow, once a critical Hencky strain is achieved, crystallization starts independently of strain rate and temperature. The amount of mechanical work per unit volume imposed/dissipated onto the polymers during flow to initialize crystallization was also calculated in capillary flow. The critical mechanical work for the onset of flow-induced crystallization was found to be independent of temperature and degree of molecular chain stretch (Wi) as Wi becomes greater than 1. The PLA sample with higher content of PLLA showed slightly higher zero-shear viscosity and a smaller thermodynamic barrier for the onset of crystallization. Lastly, the  degree of crystallinity increases linearly from 0% at the start of the flow-induced crystallization region and reaches a plateau at Wi equals to around 1. 

EFFECT OF TOPOGRAPHY, MECHANICAL PROPERTIES AND SHEAR STRESS ON CELL RESPONSES FOR TISSUE ENGINEERING APPLICATIONS
Event Dates
From: 03/11/2021 12:00
To: 03/11/2021 14:00
Speaker(s)
Place
Online Zoom Platform: https://us02web.zoom.us/j/84365015631?pwd=RG4rTHFQelNFelJKMHh1dHFCYkNpdz09

Understanding the mechanisms by which the topographical cues of extracellular matrix (ECM) affect cellular responses (proliferation, adhesion, growth, orientation, and differentiation) is fundamentally important for tissue engineering / regenerative medicine applications. Although a growing body of literature supports that the substrate’s topography influences the cell proliferation and differentiation, the underlying cellular and molecular mechanisms are poorly understood. In our attempt to approach this issue we study the cell response dependence on tunable topography, mechanical properties and defined chemistry. Our experimental findings also indicate that depending on the relation of the direction of flow with respect to the orientation of topographical features, wall shear stress gradients act in a synergistic or antagonistic manner to topography in promoting a guided morphological cell response. Towards this scope ultra-fast lasers as tools for 3D structuring were used. The laser fabricated substrates presented here could be used as model scaffolds for the systematic exploration of the role of 3D microenvironment on cell adhesion, proliferation and differentiation, with the ultimate goal of providing mechanistic insight to guide the development of clinically relevant strategies for tissue/organ repair.

Lab Phone: (+30) 2810 39 1545
Fax: B003
Ms. Georgousi Mary

Mary joined us in September 2021 to work on a novel spectroscopy model for quantum space missions.

Mary Georgousi is a MSc student in the Space–Optics Group in IESL. She completed her undergraduate studies in Physics at the Physics Department of Aristotle University of Thessaloniki. As member of the Gravitational Waves Group – AUTh, she has worked on probing the properties of our Galaxy based on the detection of gravitational waves from LISA. She currently continues her studies in astrophysics and space applications in the Master program “Advanced Physics” in the Physics Department of University of Crete. She is also a member of SpaceDot team, participating in Fly your satellite! 3 program for CubeSats.

4TH ARCHERS WORKSHOP: HEALTH: “COMPUTATIONAL APPROACHES TO BIOLOGY AND HEALTH”
Website
Event Dates
From: 08/11/2021 15:00
To: 08/11/2021 20:30
Place
virtual

The Workshop aims to highlight the contribution of engineering and computational methods in advancing biological and health sciences. It does so by bringing together top scientists to present their research in advanced genomics, bioinformatics, biomedical engineering and neuroscience along with short presentations from four of the ARCHER fellows.

The workshop is organized in the context of ARCHERS (https://archers.iesl.forth.gr/), a major project implemented by FORTH with the exclusive donation of the Stavros Niarchos Foundation (SNF). Through ARCHERS, over 100 young doctoral students and post-doctoral researchers have been supported over the past four and a half years and have carried out cutting-edge research in the Institutes of FORTH across a broad range of interdisciplinary thematics including preservation of cultural heritage and tackling of societal challenges such as environment, clean energy and health.

3RD ARCHERS WORKSHOP: ENVIRONMENT: “ENVIRONMENTAL CHALLENGES: POLLUTION AND ECOLOGY”
Website
Event Dates
From: 04/11/2021 16:00
To: 04/11/2021 19:30
Place
virtual

The workshop aims to highlight challenges posed by environmental pollution (in air, soil and water) and ecosystem threats, as well as technologies and actions to be taken to address these challenges.

The workshop is organized in the context of ARCHERS (https://archers.iesl.forth.gr/), a major project implemented by FORTH with the exclusive donation of the Stavros Niarchos Foundation (SNF). Through ARCHERS, over 100 young doctoral students and post-doctoral researchers have been supported over the past four and a half  years and have carried out cutting-edge research in the Institutes of FORTH across a broad range of interdisciplinary thematics including preservation of cultural heritage and tackling of societal challenges such as environment, clean energy and health.

2ND ARCHERS WORKSHOP: CLEAN ENERGY: “CLEAN ENERGY CHALLENGES, WITH EMPHASIS ON HYDROGEN TECHNOLOGIES”

The workshop aims to highlight the main areas of advanced and sustainable energy science and associated technological applications. The challenges for clear energy will be discussed with special attention to hydrogen related technologies.

The workshop is organized in the context of ARCHERS (https://archers.iesl.forth.gr/), a major project implemented by FORTH with the exclusive donation of the Stavros Niarchos Foundation (SNF). Through ARCHERS, over 100 young doctoral students and post-doctoral researchers have been supported over the past four and a half  years and have carried out cutting-edge research in the Institutes of FORTH across a broad range of interdisciplinary thematics including preservation of cultural heritage and tackling of societal challenges such as environment, clean energy and health.

QUANTUM MAGNETOMETRY

Atomic-optical magnetometer has been one of the leading areas in quantum technology. In this type of magnetometer information about the magnetic field is mapped to the atomic spin state, which is prepared and monitored by light.

The main interest of our group is to exploit quantum resources such as squeezing and entanglement in order to enhance the capacity, sensitivity and speed in atomic-optical magnetometers. We aim at developing new methodological approaches and implement robust experimental procedures at the quantum interface between light and warm atomic ensembles in order to perform sensing at the ultimate limits of precision. We are also interested in practical applications of ultra-sensitive magnetometer, for instance in biomedicine or in security screening. 

Currently, we are exploring two reseach directions:

  • Spin noise spectroscopy in high density alkali atomic ensembles:  Spin-noise spectroscopy contains useful information about the spin system, allowing for the study of atomic properties without externally perturbing the system. We use Faraday rotation of off-resonant light to passively detect the spin noise in an equilibrium ensemble of room-temperature paramagnetic alkali atoms experiencing a DC magnetic field. In the regime of high alkali density and low magnetical field, strong correlations between the hyperfine levels result in previously unnoticed features in the spin noise spectrum. 
  • Simultaneous reduction of all quantum noises in an atomic-optical magnetometer: In an atomic-optical magnetometer information about the magnetic field is mapped to the atomic spin state, which is then monitored by light. These magnetometers have reached a level of sensitivity limited by quantum effects. We can identify three noise sources originating from the quantum nature of light and atoms that could potentially limit the sensitivity of the magnetometer: photon shot noise, atom shot noise (also called spin projection noise) and the back-action noise. We aim to realize a magnetometer that will address for the first time all types of quantum noise that affect an atomic-optical magnetometer and demonstrate quantum advantage in the measurement. To this end, we will use stroboscopic modulation of the probe light synchronized with the atomic spin precession, resulting in atomic-spin squeezed and light-squeezed states.

 

Quantum Enhanced Magnetometer with Squeezed Light
Quantum measurement with cold atoms

Heads

Dr. Vasilakis Giorgos
Principal Researcher

Research Associates

Dr. Mylonakis Mikis
PostDoctoral Fellow

Alumni

Ms. Koutrouli Vassiliki
Ph.D. student

Pages