PREVENTIVE MAINTENANCE AND SOLVING OF BSA ISSUES ON MA6BA6-000432
This call is now closed.
Publication Date
28/05/2025 00:00
Offers Closing Date
02/06/2025 09:00
Evaluation Date
Type
Cost (Ex VAT)
11000€

Abstract

Το Ινστιτούτο Ηλεκτρονικής Δομής και Λέιζερ του Ιδρύματος Τεχνολογίας και Έρευνας (ΙΤΕ-ΙΗΔΛ) στο πλαίσιο του έργου «APECS-PL-PN:101183307», προτίθεται να προχωρήσει στην επισκεύη-συντήρηση του ευθυγραμμιστή μασκών οπτικής λιθογραφίας (Mask aligner)».

Technical Characteristics

Procedure

Contact Persons

BIOFABRICATION TECHNOLOGIES TO INSTRUCT REGENERATION
Event Dates
From: 29/05/2025 12:00
To: 29/05/2025 14:00
External Speaker
Prof. Lorenzo Moroni (Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, The Netherlands)
Place
FORTH Seminar Room: C. Fotakis

A key factor in current approaches for tissue and organ regeneration relies on enhancing (stem) cell-material interactions to obtain the same original functionality. Different approaches include delivery of biological factors, functionalization of biological factors onto 3D scaffolds surface, engineering surface properties (e.g. via topography modifications), and controlling bulk and structural chemical and mechanical properties of the cell-laden biomaterial porous constructs that are developed for regeneration. Although these strategies have proved to augment cell activity on biomaterials, they are still characterized by limited control in space and time, which hampers the proper regeneration of complex tissues. Here, we present a few examples where integration of biofabrication platforms allowed the generation of a new library of biological constructs with tailored biological, physicochemical, and mechanical cues at the macro, micro, and nano scale. These biological constructs are characterized by tailored cell-material interactions able to influence the activity of stem cells, thereby sustaining the regeneration of complex tissues. From these examples as well as from the study of other scientists, converging technologies seems to be a powerful route towards designing of biological constructs with instructive properties able to control cell activity for the regeneration of functional tissues. Future efforts should aim at further improving technology integration to achieve a fine control on stem cell fate by biomaterial and scaffolds design at multiple scales. This will enable the regeneration of complex tissues including vasculature and innervation, which will result in enhanced in vivo integration with surrounding tissues. By doing so, the gap from tissue to organ regeneration will be reduced, bringing regenerative medicine technologies closer to the clinics.

RAMANBC - ONE (1) RESEARCH ASSISTANT POSITION
This position has been filled.
Publication Date
19/05/2025
Application Deadline
29/05/2025
Position Category
Reference Number
2025_179060
Salary
Location
Herakleion, Crete, Greece
Contact Person
Start Date
01/08/2025

Position Description

Job Description

Technical support for the design and construction of a beam splitter board

We are looking for a Research Assistant to take an important role in our ESA projects in space optics. The ideal candidate should be able to work indecently as well as in a team

Required Qualifications

  • B.Sc. Degree in Materials Science or related domains. 
  • M.Sc. Degree in Materials Science or related domains 

Desirable Qualifications

  • Demonstrated Experience in designing and implementing optical systems 
  • Fluent in English, both written and spoken (at least C2) 
  • Interview 

Application Procedure

Interested candidates who meet the aforementioned requirements are kindly asked to submit their applications to the address (hr@iesl.forth.gr), with cc to the Scientific Coordinator Dr Wolf von Klitzing (wvk@iesl.forth.gr).

 

In order to be considered, the application must include:

  • Application Form (Form Greek or Form English to the left)
  • Brief CV
  • Scanned copies of academic titles

Any application received after the deadline will not be considered for the selection

Appointment Duration

12
POL-ESKIN - ΜΙΑ (1) ΘΕΣΗ ΜΕΤΑΔΙΔΑΚΤΟΡΙΚΟΥ/ΗΣ ΣΥΝΕΡΓΑΤΗ
The deadline to apply for this position has expired.
Publication Date
19/05/2025
Application Deadline
29/05/2025
Position Category
Reference Number
2025_179044
Salary
Location
Herakleion, Crete, Greece
Contact Person
Start Date

Position Description

Μία Θέση Μεταδιδάκτορα στο Εργαστήριο Ηλεκτρονικών Πολυμερών και Βιοηλεκτρονικής : Χαρακτηρισμός οργανικών αγώγιμων μορίων και πολυμερών για την ανάπτυξη ηλεκτρονικού δέρματος

Αναζητούμε έναν/μια μεταδιδάκτορα για να μελετήσει νέα πολυμερικά υλικά, με εφαρμογή στην ανάπτυξη ηλεκτρονικού δέρματος, σε ερευνητικό έργο χρηματοδοτούμενο από το ΕΛΙΔΕΚ. Συγκεκριμένα το άτομο που θα επιλεγεί θα δουλέψει πάνω στην επεξεργασία και στο φυσικό χαρακτηρισμό οργανικών αγώγιμων πολυμερών. Έμφαση θα δοθεί στο χαρακτηρισμό των οπτικών και οπτοηλεκτρονικών ιδιοτήτων των υλικών αυτών. Πρότερη εμπειρία στην κατασκευή custom διατάξεων για το χαρακτηρισμό δειγμάτων θα εκτιμηθεί ιδιαιτέρως θετικά

Related Project

Pol-eSkin -

Required Qualifications

  • Πτυχίο και μεταπτυχιακό στη Φυσική 
  • Διδακτορικό Δίπλωμα στη Φυσική
  • Άριστη γνώση και χρήση της αγγλικής γλώσσας
  • Πρότερη εργαστηριακή εμπειρία (10+ έτη) σε φασματοσκοπικές μεθόδους για τη μελέτη οπτικών και οπροηλεκτρονικών ιδιοτήτων λεπτών υμενίων ή μεμβρανών. 

Desirable Qualifications

  • Εμπειρία στον αυτοματισμό εργαστηρίου για την κατασκευή custom διατάξεων για τον αυτοματοποιημένο χαρακτηρισμό δειγμάτων

Application Procedure

Στο φάκελο υποβολής της πρότασης θα πρέπει να εμπεριέχονται τα ακόλουθα:

  • Αίτηση (Form Greek στην αριστερή στήλη) με αναφορά στο όνομα του προγράμματος
  • Αναλυτικό Βιογραφικό Σημείωμα
  • Ευκρινή φωτοαντίγραφα τίτλων σπουδών

 

ΥΠΟΒΟΛΗ ΠΡΟΤΑΣΕΩΝ

Οι ενδιαφερόμενοι καλούνται να υποβάλουν τις αιτήσεις τους και όλα τα απαραίτητα δικαιολογητικά, ηλεκτρονικά στη διεύθυνση hr@iesl.forth.gr με κοινοποίηση (cc): στην Δρ Ε. Παυλοπούλου (epavlopoulou@iesl.forth.gr). Οι αιτήσεις θα πρέπει να αποσταλούν με την ένδειξη: «Αίτηση στο πλαίσιο του προγράμματος Pol-eSkin, της πρόσκλησης εκδήλωσης ενδιαφέροντος με Α.Π. … ». 

 

Appointment Duration

4
POWERSAT
Powering Satellites by a Combination of Solar and Microwave Energy Harvesting
Start Date: 01/10/2024,     End Date: 01/10/2027

The solar infrared (IR) spectrum has crucial applications in electronic systems, such as reducing the weight and launch costs of satellite solar cells. However, its potential remains underutilised. The EU-funded POWERSAT project aims to develop a platform that captures energy from the IR spectrum and converts microwave spillover from satellite antennas into a DC power supply. This energy will power low-power embedded electronics within satellites and enable efficient inter-satellite communication links. The project will produce five demonstrators: one for solar energy harvesting and four for capturing microwave energy. The goal is to integrate these technologies into satellite electronic systems, replacing traditional solar cells and thereby reducing satellite weight and launch costs.

Principal Investigator

Dr. Konstantinidis George
Research Director

Scientific Staff

Dr. Adikimenakis Adam
Assistant application Scientist

Technical Staff

Dr. Kostopoulos Thanasis
Technical Scientist
Mr. Stavrinidis Antonis
Technical Scientist
Mr. Stavrinidis George
Technical Scientist
Mr. Makris Nikolaos
Technical Scientist
Ms. Kayambaki Maria
Technical Scientist
Ms. Tsagaraki Katerina
Technical Scientist
Ms. Androulidaki Maria
Technical Scientist
Ms. Kontomitrou Vasiliki (Valia)
Technical Scientist

Alumni

Dr. Aslanidis Evangelos
PostDoctoral Fellow
Dr. Trichas Emmanouil
PostDoctoral Fellow

Funding

Funded by the European Union
DEEP AND FAST IMAGING: SWIM AND SLIDE FOR NONLINEAR MICROSCOPY WITH NEW LASER SOURCES
Event Dates
From: 21/05/2025 12:00
To: 21/05/2025 14:00
External Speaker
Dr. Alexandra Latshaw (University of Geneva, Geneva, Switzerland)
Place
FORTH Seminar Room: C. Fotakis

The Nonlinear Bio-Imaging Lab, in collaboration with the FAIR CHARM consortium, is developing new nonlinear imaging platforms to meet diverse biological challenges. In this talk, I will present recent results from two complementary systems: the SWIM microscope, designed for deep, label-free imaging, and SLIDE, designed for ultrafast volumetric acquisition.

Using SWIM, we are developing AI-assisted cell detection from THG images of stained histological samples of human skin, and are now extending this approach to unstained ex vivo biopsies as a step toward in vivo 3D skin microscopy. We also apply SWIM to label-free imaging of mucus in lung models, where we visualize mucus volume, structure, and flow behavior without the need for fluorescent tracers.

With SLIDE, we demonstrate detection of stem cells in whole, unfiltered blood. Harmonic nanoparticle-labeled cells are imaged in flow using a diffractive scanning geometry driven by a wavelength-swept FDML laser. AI segmentation and downstream analysis distinguish isolated cells from aggregates, supporting future applications for in vivo tracking of rare cells circulating in the bloodstream.

Both systems are based on parametric excitation of harmonic signals, but differ in optical design and laser source. SWIM uses a tunable femtosecond OPA source (1250–1800 nm) for deep tissue imaging via 3P and THG processes, while SLIDE uses narrowband pulses and diffractive scanning to achieve 40 Hz 3D imaging at subcellular resolution. Together, these platforms broaden the reach of multiphoton microscopy in both depth and speed, from static 3D tissue structure to dynamic processes.

CARIOQA
Cold Atom Rubidium Interferometer in Orbit for Quantum Accelerometry – Pathfinder Mission Preparation

Principal Investigator

Dr. von Klitzing Wolf
Principal Researcher

Funding

European Horizon 2020 framework
RAMANBC
Development of a Fibered Raman Combiner for Quantum Space Sensors
Start Date: 01/05/2024,     End Date: 01/05/2025

For RamanBC, we are developing an optical bread board which combines the light from two optical fiber via an acousto-optic modulator into a third fiber. The acousto-optic modulator allow us to shift the frequency of the light and create extremely well controlled pulses. We aim at frequency control in the Hertz region and amplitude control exceeding 100dB. This project will be carried out in collaboration with excel, which is Europe's leading company for navigation sensors and producer of  a Quantum gravity sensor based on atom interferometry. The technology that we are creating for RamanBC is aimed at the first space mission, including a quantum gravity sensor (CARIOQA).

Principal Investigator

Dr. von Klitzing Wolf
Principal Researcher
Prof. Papazoglou Dimitrios
University Faculty Member
exail Technologies

Funding

European Space Agency (ESA)

Pages