The nanochemistry facility entails exploitation of elaborate colloidal chemistry approaches (ambient and high-temperature) to harness nanoscale size and shape-guiding mechanisms that afford various kinds of functional nanocrystals (single-phase, core@shell, anisotropic, hybrid particles) with tunable response (semiconducting, metallic, magnetic etc). Multidimensional nanostructures, such as cluster-like nanoarchitectures or periodic nanoparticle superlattices could also be realized by exploiting our know-how on directed assembly methods in liquid media.
Applications:
The aim is to provide a user-oriented platform for cost-efficient, easily scaled-up fabrication of novel inorganic nanoparticles, as well as their complete understanding that facilitates their use in diverse and interdisciplinary applications, from data storage and electronics to catalysis and biomedical imaging/therapy.
Basic Tools:
Projects benefit from controlled requirements for nanocrystal growth under anaerobic conditions met by the offered tools (e.g. Schlenk techniques, including digital temperature control growth conditions, Ar-circulating glove-boxes) that are combined with an armory of in-house characterization methods (structural, optical, electrical, dielectric, magnetic etc.).
- Chemical hoods equipped with vacuum-inert gas lines (Schlenk type), Glove-boxes, Centrifuges, Digital temperature controlled heating mantles, Magnetic stirrer hot plates, Incubators, Analytical balances
- Conventional and CCD-assisted stereoscopes, KBr hydraulic press, Glass-blowing propane torch
- Single and two-zone programmable furnaces (up to 1600°C) for vacuum or gas-flow reactions, High-vacuum line with portable programmable furnace for CVT (cf. sublimation & degassing), Thermogravimetric analysis
